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Abstract: Succinic acid (SA) is one of the top candidate value-added chemicals that can be produced
from biomass via microbial fermentation. A considerable number of cell factories have been proposed
in the past two decades as native as well as non-native SA producers. Actinobacillus succinogenes
is among the best and earliest known natural SA producers. However, its industrial application
has not yet been realized due to various underlying challenges. Previous studies revealed that the
optimization of environmental conditions alone could not entirely resolve these critical problems.
On the other hand, microbial in silico metabolic modeling approaches have lately been the center
of attention and have been applied for the efficient production of valuable commodities including
SA. Then again, literature survey results indicated the absence of up-to-date reviews assessing
this issue, specifically concerning SA production. Hence, this review was designed to discuss
accomplishments and future perspectives of in silico studies on the metabolic capabilities of SA
producers. Herein, research progress on SA and A. succinogenes, pathways involved in SA production,
metabolic models of SA-producing microorganisms, and status, limitations and prospects on in silico
studies of A. succinogenes were elaborated. All in all, this review is believed to provide insights to
understand the current scenario and to develop efficient mathematical models for designing robust
SA-producing microbial strains.

Keywords: in silico metabolic modeling; succinic acid; Actinobacillus succinogenes; pathways

1. Introduction

In the past few years, tremendous attempts and successes have been witnessed in
the development of the green economy through the production of chemicals, fuels, mate-
rials, etc., from bio-based sources [1]. To begin with, succinic acid (SA) is one of the top
potential value-added chemicals that can be produced biotechnologically from biomass re-
sources [2,3]. More interestingly, SA as a high-value platform chemical can be co-produced
with high-yield products such as biofuels via integrated biorefinery approaches [4,5] that
could offset the process cost [6] and also alleviate waste management issues. In fact, the
application of SA ranges from being a specialty chemical in pharmaceutical, food and agri-
cultural areas to being a precursor for industrially important bulk chemicals [7,8]. Among
the well-known SA producers are natural host rumen bacteria, model microorganisms and
non-conventional microbial cell factories. To this end, Actinobacillus succinogenes, being one
of the best natural SA producers, has been given more emphasis in the current review.

From the pre-genomic era to date, the metabolic control and optimization of environ-
mental conditions have been implemented in the microbial production of value-added
commodities. However, obviously, there are other complicated genotypic traits that are
beyond the appliance of these strategies. In addition, traditional mutagenesis and screening
methods have also been employed in the development of improved strains to produce
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desired products [9]. The success stories of these traditional methods in strain improvement
are still undeniable. However, despite being time- and resource-consuming, they could
also pose some problems such as the possession of undesired mutations [10], uncontrolled
multiple traits, and irreversible damage to the host cell [11]. Furthermore, Lee et al. ex-
plained that it could be challenging to recognize which genes have to be manipulated from
many lists of genes of a given organism to generate the desired phenotype [12]. On the
other hand, taking advantage of technological advancements in high-throughput (HT)
techniques and the availability of vast genomic data provides a new paradigm for the ratio-
nal design of cell factories via the development of predictive mathematical models [9,13].
Hence, these mathematical models would assist in predicting in silico outcomes of genetic
and phenotypic traits rather than choosing desired strains resulting from tedious random
mutagenesis [9]. Besides, in silico metabolic models combined with other computational,
evolutionary and comparative genomic analyses could serve as proof-of-concept for the
successful metabolic engineering of cell factories for the synthesis of desired products such
as SA [12,14].

Despite the availability of numerous studies and huge potential applications, there is
a lack of up-to-date comprehensive reviews covering the implications of in silico metabolic
modeling in SA production. The only claimed review in this regard was first published
online at the end of 2016 [14]. Therefore, the current study included topics that were not
discussed in the previous review, viz., A. succinogenes, new advancements and prospective
in this area. This review presented highlights on advancements of research and develop-
ment (R&D), metabolic pathways and in silico studies generally on SA production and
specifically regarding A. succinogenes. Finally, the status quo and future perspectives of in
silico metabolic modeling in SA production were summarized. We believe this review can
be taken as the first step (from the lists below) in the quest towards the development of ro-
bust SA-producing hosts by applying computational methods: (1) understand, summarize
the current scenario, identify gaps and suggest possible prospects, (2) design and employ
state-of-the-art models, (3) validate via experimentation and literature, and (4) implement
an in silico model in vitro and in vivo.

2. Major R&D Advancements on SA and A. succinogenes

When we look back to timelines of SA, its discovery, application and production
should be assessed. Figure 1 demonstrates major milestones in the history of SA and
A. succinogenes. To begin with, documents revealed that SA was first purified in 1546 by
distillation from amber (SA is also known as amber acid), and since then it has been used for
various applications [15,16]. However, until recently, the majority of SA has been derived
from petroleum-based sources. Encouragingly, SA was proposed twice as “top value-added
chemicals from biomass” in 2004 [2] and in the revised 2010 [3] studies. Following this, the
first commercial bio-based SA production plants were launched and it was reported that
these companies contributed half of the annual global SA production [17,18]. As far as A.
succinogenes is concerned, a patent for the production of SA using this strain was registered
in 1996 [19], and the first strain isolated from bovine rumen was published in 1999 [20].



www.manaraa.com

Fermentation 2021, 7, 220 3 of 18

Figure 1. Major timelines of succinic acid and A. succinogenes. The shaded boxes represent A. succinogenes. The numbers
represent the sources of the studies: 1 [15,16], 2 [21], 3 [22], 4 [23], 5 [24], 6 [19], 7 [25], 8 [20], 9 [2], 10 [26], 11 [27], 12 [27],
13 [8], 14 [18], 15 [3], 16 [28], 17 [29], 18 [30].

A literature survey was conducted using the Web of Science database against the
terms “succinic acid” and “Actinobacillus succinogenes” separately, employing the “Basic
Search” option. According to the search results, there were 19,338 and 426 studies about SA
and A. succinogenes, respectively. Figure 2 shows the number of these publications filtered
from 1999 to 2020. The research trends of SA revealed that the number of publications has
increased chronologically with slight exceptions. For instance, the number of studies in 2018
(the highest) was increased almost 5-fold compared with the 1999 counterpart. This is, in
fact, one indication of the attraction of the subject matter to the scientific community. Unlike
SA, the number of studies on A. succinogenes indicated yearly fluctuations, with only one
published study in 2000 and the absence of publications in the next two consecutive years.
Additionally, the number of publications has increased dramatically since 2007, which
coincided with the release of A. succinogenes’ genome sequence to GenBank (Figure 1). As
a matter of fact, from the total number of publications regarding A. succinogenes, more than
96% of them have been disseminated since the aforementioned year. This shows that the
aftermath of the availability of the organism’s genomic data has led to a significant growth
of interest and opened a new avenue in research. It is worth mentioning that genomic data
are also a stepping stone for in silico metabolic modeling, which is the core theme of this
review. Moreover, the highest number of publications for both SA and A. succinogenes was
recorded in 2018 (Figure 2).
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Figure 2. Literature survey results on succinic acid and A. succinogenes. The inset graph represents A. succinogenes.

3. Succinic Acid Production Pathways

It is important to have an unequivocal understanding about SA production pathways
before directly moving to the topic of metabolic modeling. This is partly because finding
appropriate biochemical pathways from the metabolic network represents the most chal-
lenging task in computational metabolic modeling [31]. Therefore, the realization of the
participating pathways in SA production is a crucial step to develop plausible metabolic
models and implement the existing ones accordingly. In line with this, applying accumu-
lated knowledge of metabolic pathways combined with the optimization of fermentation
processes and other advanced techniques has enabled the development of efficient strains
capable of producing target products with high efficiency [32,33].

The tricarboxylic acid (TCA) cycle is among the major biochemical hubs with inevitable
functions in the cell mainly for energy generation and precursor synthesis [34]. Obviously,
being an intermediate compound of the TCA cycle [35], it is possible to infer that almost all
living things can produce SA, whereas the choice of host strain relies on SA being the major
end product and, so far, rumen microbes such as A. succinogenes are potentiality considered
as the best natural SA producers [36]. In general, based on the downstream metabolites of
glycolysis and the TCA cycle, there are three pathways that lead to SA production, namely
the reductive and oxidative branches of the TCA cycle and the glyoxylate shunt (GS)
(Figure 3). Accordingly, various organisms follow one or more of these routes to produce
SA. This diversity may arise due to the absence and/or inactivation of certain enzymes,
environmental conditions (e.g., mode of fermentation) or any other reasons. However,
interestingly, it is possible to manipulate biochemical pathways by adding novel routes,
redirecting existing pathways or removing unnecessary ones through genetic engineering
to construct efficient tailor-made cell factories. What is more fascinating is if the TCA cycle
has to be exploited for chemical production, SA is the best candidate to be produced with
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maximum possible routes, whereby the two branches of the TCA cycle are linked via the
GS [34] (Figure 3).

Figure 3. Major metabolic pathways of succinic acid production. The numbers represent alternative routes towards succinic
acid.

Phosphoenolpyruvate (PEP) and pyruvate are important branching nodes for SA pro-
duction. As shown in Figure 3, the reductive branch of the TCA cycle possibly splits from
these nodes and is directed towards SA predominantly by carboxylation reaction. In total,
four routes are shown in Figure 3, with two routes from each node represented by 1 to 4.
Route 1 and 2 depict the route from PEP to oxaloacetate (OAA), catalyzed by PEP carboxy-
lase and PEP carboxykinase. Route 3 and 4 are directed from pyruvate to OAA and malate,
catalyzed by pyruvate carboxylase and malic enzyme, respectively. All in all, this pathway
is active under anaerobic conditions and covers TCA cycle intermediate metabolites of
OAA, malate, fumarate and SA as an end product. The detailed reactions and mechanisms
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have been reported in previous publications [34,37–39]. Microbes may possess one or more
of these alternative pathways, and their efficiencies in SA production have been evaluated
previously (Table 1). According to Kim et al., the overexpression of PEP carboxykinase
from A. succinogenes’ genome to Escherichia coli improved SA production compared with the
native PEP carboxylase [40]. The common byproducts of SA production (formate, acetate,
lactate and ethanol) occur at the C3 pathway diverted from pyruvate and acetyl-CoA and
cause the competition of carbon flux between the product formation C4 pathway (reductive
TCA pathway) and byproduct formation C3 pathway (Figure 3). Researchers attempted
to overexpress one or more of the above-mentioned carboxylation enzymes and could
enhance SA production and reduce byproduct formations through redirecting carbon flow
towards SA-producing reductive branches of the TCA cycle [38,41–43].

Table 1. A few examples of metabolic pathways employed for succinic acid production.

Production Route Pathway Construction Microorganism Reference

Reductive TCA cycle (RT) Inactivate lactate and acetate formation pathways and
overexpress pyruvate carboxylase gene (pyc)

Corynebacterium
acetoacidophilum [44]

Activate enzymes of RT Lactobacillus
plantarum [45]

Overexpress pyc C. glutamicum [46]

Oxidative TCA cycle (OT) Delete succinate dehydrogenase (SDH) gene (sdh) Yarrowia lipolytica [47]

Overexpress genes in the PPP for xylose utilization and
delete sdh Y. lipolytica [48]

Glyoxylate shunt (GS) Reverse PEP carboxylase via deletion of sdh and
overexpress genes involved in GS E. coli [49]

Activate GS via inactivation of SA biosynthetic
byproduct (lactate, acetate, formate and ethanol)

formation-encoding genes
E. coli [50]

RT-OT (TCA)
Disrupt genes of aconitase, fumarate reductase, alpha

ketoglutarate dehydrogenase, SDH, fumarase, isocitrate
lyase and fumarate reductase

S. cerevisiae [51]

Delete ptsG and genes of SA biosynthetic byproducts
and overexpress PEP carboxykinase E. coli [52]

RT-GS Overexpress genes in the PPP for xylose utilization, pyc,
citrate synthase and succinate exporter C. glutamicum [53]

Delete genes of SDH (sdh1 and sdh2) and isocitrate
dehydrogenase (idh1 and idh2) S. cerevisiae [54]

OT-GS Delete genes of SDH, IDH and acetate-producing
pathway E. coli [55]

Delete genes of SDH and acetate-producing pathway
and overexpression of pyc and PEP carboxylase C. glutamicum [56]

TCA-GS (RT-OT-GS) Delete genes of SDH and acetyl-CoA transferase and
overexpression of key enzymes of RT, OT and GS Y. lipolytica [41]

Kinetic study including RT, OT, GS and other pathways E. coli [57]

PPP: pentose phosphate pathway.

In the oxidative TCA cycle, pyruvate enters into the TCA cycle via acetyl-CoA and
is converted to citrate, isocitrate and eventually to SA under aerobic fermentation, as
shown in Figure 3 route 5. Likewise, SA production using GS, shown in Figure 3 route
6 and 7, is catalyzed by isocitrate lyase and malate synthase, respectively. This pathway
also operates optimally under aerobic conditions. The central metabolic pathway of A.
succinogenes lacks GS, and the TCA cycle is also incomplete due to the absence of oxidative
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TCA cycle enzymes of citrate synthase and isocitrate dehydrogenase [8] (Figure 4). Hence,
the wild strain depends entirely on the reductive branch of the TCA cycle for SA production.
Table 1 demonstrates SA production by various microorganisms using the aforementioned
three major pathways and their combinations. It is also worth noting that each route has
merits and demerits. In this regard, Raab et al. explained that the concurrent operation of
oxidative and reductive routes appears to be more advantageous than exclusively oxidative
or reductive, compromising the advantages and disadvantages of each pathway [58]. As a
remark, the final goal of metabolic modifications should be to maximize SA production
and at the same time minimize/eliminate byproduct formation to achieve a homo-SA
production system.

Figure 4. Central metabolic pathway of A. succinogenes. The green dashed box represents the reductive TCA cycle (C4) for
succinic acid production (incomplete TCA cycle) and the red dashed box represents the byproduct formation routes (C3).
Numbers represent enzymes involved in the metabolic reactions: 1, PEP: glucose phosphotransferase or hexokinase; 2, PEP
carboxykinase; 3, malate dehydrogenase; 4, fumarase; 5, fumarate reductase; 6, pyruvate kinase; 7, lactate dehydrogenase;
8, pyruvate dehydrogenase; 9, pyruvate-formate lyase; 10, formate dehydrogenase; 11, phosphotransacetylase; 12, alcohol
dehydrogenase; 13, acetyl-kinase; 14, acetaldehyde dehydrogenase. See the abbreviations in the designated section
“Abbreviations”.
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4. Metabolic Models of SA Producers

This section describes the developments of in silico metabolic modeling in selected
SA-producing strains. The detailed description of various computational methods of
metabolic modeling is not within the scope of this review as these concepts have been
exhaustively reviewed elsewhere [9,10,14,59–64]. Scholars have proposed several metabolic
modeling approaches and each method comes with intrinsic advantages and disadvantages.
Hence, the application of a specific modeling strategy should consider viable parameters
accordingly. In fact, various resources are publicly available for users to engage with for
such purposes. For the sake of convenience, Copeland et al. [65], Jing et al. [66] and O’Shea
et al. [67] listed out databases, software tools, resources, etc., that could be employed for
metabolic modeling studies. Combining accumulated biological knowledge, experimental
studies, genomic information and appropriate aforementioned computational inputs, one
can possibly execute a metabolic model of a particular biocatalyst for target product
synthesis.

Metabolic modeling studies can be generally based on either of the two broad assump-
tions or their combinations: dynamic/kinetic and static/stoichiometric/steady-state [9,68].
The former describes the variation of metabolites with time by applying differential equa-
tions, while the latter assumes that the production and loss of metabolites are equal,
resulting in net zero production [31,61]. Kinetic models require a myriad of experimental
data for enzyme rate parameters. On the contrary, constraint-based metabolic models,
under the assumption of steady-state conditions, involve fundamentally fewer parameters
for construction [61]. Hence, this model is commonly employed for the metabolic synthesis
of desired products including SA.

Flux balance analysis (FBA) based on constraints has become a universally applicable
strategy for metabolic studies [68,69]. In FBA, the flow of metabolites in the metabolic
network is analyzed using mathematical approaches. In principle, in silico approaches are
executed at dry labs and these simulation results could provide theoretical backgrounds
to move to wet labs for the actual experimental studies. This is because of the presence
of a plethora of conditions that are practically challenging or even impossible to be tested
experimentally in vitro or in vivo. Metabolic models of SA-producing microbes from the
very earliest study by Lee et al. [70] to the latest ones are listed chronologically in Table 2.
Most of the computational studies were basically focused on non-native strains such
as E. coli to explore the metabolic capabilities of microbes and hunt for efficient ways to
produce SA. These metabolic models led to the identification and construction of alternative
SA pathways (as discussed in the above section) and finally the development of model-
guided experimental strategies for enhanced SA production. To begin with, in probably the
first in silico study for SA production, Lee et al. constructed a metabolic pathway of E. coli
and further conducted metabolic flux analysis (MFA) to calculate flux distributions for the
maximum possible SA yield [70]. MFA results of this study revealed that the theoretical
SA yield could be improved through recruiting the pyruvate carboxylation pathway (see
Figure 3, route 4) rather than the native PEP carboxylation. Interestingly, this theoretical
assumption was ultimately validated by experimental set ups.

Table 2. In silico metabolic studies on succinic acid-producing microorganisms.

Organism In Silico Operation and Purpose Year Reference

E. coli Metabolic flux analysis (301 reactions and 294 metabolites) to attain the
highest in silico SA yield 2002 [70]

M. succiniciproducens Genome-scale flux analysis (373 reactions and 352 metabolites) to
determine the general genome-scale metabolic characteristics 2004 [71]

E. coli Metabolic flux analysis (310 reactions and 295 metabolites) to predict
volumetric rates of intracellular metabolites 2004 [72]
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Table 2. Cont.

Organism In Silico Operation and Purpose Year Reference

E. coli
Comparative genomic analysis to estimate the relationship between the

maximum biomass and SA production in metabolically
modified strains

2005 [73]

E. coli Genome-scale in silico aided metabolic analysis and flux comparisons
to determine the in silico optimal SA production pathway 2006 [74]

M. succiniciproducens
Genome-scale metabolic analysis (686 reactions and 519 metabolites)

for genome-scale analysis and designing efficient metabolic
engineering studies

2007 [75]

M. succiniciproducens
Constraints-based flux analysis of genome-scale metabolic model to

evaluate the production patterns of various organic acids against
variable rates of glucose, CO2 and H2

2009 [76]

A. niger
Genome-scale stoichiometric metabolic model to identify target genes

for metabolic manipulation and redirect the pathway towards SA
production route

2009 [77]

E. coli Genome-scale thermodynamics-based flux balance analysis to predict
the maximum biomass and SA flux 2011 [52]

S. cerevisiae Genome-scale metabolic model and flux balance analysis to establish
SA overproduction strategies 2013 [78]

S. cerevisiae Genome-scale metabolic network reconstruction to predict gene
deletions that can couple enhanced biomass and SA production 2013 [79]

Basfia succiniciproducens Metabolic flux analysis to identify undesired fluxes and improve
SA yield 2013 [80]

E. coli Metabolic network construction (65 reactions and 44 metabolites) to
evaluate the effect of the carboxylation reactions on SA production 2014 [39]

A. succinogenes Metabolic model (27 reactions and 28 metabolites) for SA production
using a mixture of glucose and xylose substrates 2014 [81]

E. coli Kinetic model prediction to predict response to multiple environmental
perturbations and overproduction of SA 2015 [57]

E. coli Optimization algorithm and flux balance analysis to identify a set of
genes for deletion to improve SA and lactic acid productions 2015 [82]

E. coli
Genome-scale metabolic core model to reconstruct the metabolic fluxes
and evaluate the characteristics so as to improve SA production and

reduce byproduct formation
2016 [83]

E. coli
Genome-scale metabolic model and Minimization of Metabolic

Adjustment algorithm to improve the strain and increase SA
production using glucose and glycerol substrates

2016 [84]

E. coli Genome-scale metabolic model to evaluate the effect of gene deletion
for enhanced SA production 2016 [85]

M. succiniciproducens Genome-scale metabolic simulations to identify gene targets to be
engineered for enhanced nearly homo-SA production 2016 [86]

M. succiniciproducens
Genome-scale metabolic flux analysis, omics analyses and metabolic
reconstruction to develop a high-yield homo-SA-producing strain by

metabolic engineering and carbon source optimization
2016 [87]

A. succinogenes Thermodynamically constrained metabolic flux analysis to
demonstrate the effect of environmental conditions on metabolic fluxes 2016 [88]

E. coli Simulation and reaction expression analysis to identify genetic
strategies for overproduction of SA 2017 [89]

E. coli and A. succinogenes Dynamic flux balance analysis to estimate the maximum theoretical
productivity of a batch culture system 2017 [90]
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Table 2. Cont.

Organism In Silico Operation and Purpose Year Reference

E. coli Metabolism–downstream coupled model for metabolic engineering of
the strain to produce SA using glycerol substate 2018 [91]

E. coli and Z. mobilis Hybrid of differential search algorithm and flux balance analysis to
identify knockout relations for enhanced SA production 2018 [92]

E. coli Genome-scale metabolic model to predict gene deletion for enhanced
SA production using glycerol substrate 2018 [93]

E. coli and S. cerevisiae
Hybrid of optimization algorithm and genome-scale metabolic models

to predict the near-optimal set of gene deletions for overproduction
of SA

2018 [94]

A. succinogenes
Comprehensive carbon metabolism model (375 reactions) to analyze

the metabolism and predict knockout strategies for maximum SA
production with maintaining the cell growth

2018 [95]

A. succinogenes Genome-scale metabolic model to evaluate the metabolic capability of
the strain to produce SA under various conditions 2018 [30]

Zymomonas mobilis Genome-scale metabolic model to characterize SA-producing capability
and comparatively identify gene deletions for enhanced SA production 2018 [96]

E. coli Optimization modeling to identify near-optimal knockout genes for the
maximum production of SA 2020 [97]

Aspergillus niger
Integration of genome-scale metabolic model with dynamic modeling
and genetic algorithm to provide simpified gene deletion strategies for

the complex evolutionary goals containing multiple targets
2020 [98]

M. succiniciproducens Flux variability scanning using genome-scale metabolic model to
identify amplification target genes for improved SA production 2020 [99]

Likewise, other potential microbes were also evaluated for their metabolic capability of
SA production. The fundamental difference in these in silico studies, besides the algorithms
employed, is the scope of metabolic network coverage. The scope could range from central
carbon, intermediate, to genome-scale metabolic models. Genome-scale metabolic models
(GEMs) are by far the most inclusive models that can help us to predict system-wide
phenotypic and genotypic traits so as to facilitate the manipulation of the metabolic network
of an organism [13]. Herewith, we have included GEMs of the most commonly employed
SA-producing microorganisms (Table 3). As it can be seen in Table 3, each version (if any)
of GEM of a given microbe evolves with the incorporation of more metabolites, metabolic
reactions, genes and so forth (in reference to the previous version) in the quest towards
the construction of the most comprehensive model. In this regard, recent reviews pointed
out that E. coli’s GEM appears to be the most complete [59] and the best validated [100] so
far. On top of other advantages, one beauty of GEM construction is that it can be applied
not only for specific target products like SA, but it can also be used for any aspects of
studies of an organism. The GEMs shown in Table 3 may not be necessarily constructed
for the purpose of SA production. Therefore, the public availability of the GEMs can be
used as a reference (1) for the construction of their latest version, (2) to manipulate the
organism’s metabolism for tailored studies and (3) to design GEMs for other related stains
and purposes. Moreover, the availability of multiple GEMs of an organism may assist in
picking the most suitable model based on specific interest. For instance, Agren et al. [78]
considered the earliest GEM (iFF708) [101] to metabolically engineer S. cerevisiae for SA
production, despite the availability of other latest models. The authors explained that they
chose this model because it focuses on central carbon metabolism and includes relatively
small subcellular compartments, which favors it for SA production studies. The power of
in silico metabolic modeling has also been seen in a recent SA production study using M.
succiniciproducens as a biocatalyst. In this research, GEM [75] was analyzed to characterize
malate dehydrogenase (MDH) and finally the overexpression of genes encoding MDH led
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to the production of the highest overall SA reported to date [99]. This is one of the latest
tangible pieces of evidence of applications of model-guided in silico studies in the journey
of developing industrially compatible SA-producing strains.

Table 3. Genome-scale metabolic models of A. succinogenes and other selected succinic acid producers.

Genome
Size (bp)

Total #
Genes Model Version Year # Genes in

the Model # Metabolites # Reactions ORF Coverage
(%) Reference

A. succinogenes 2,319,663 2210 iBP722 2018 722 713 1072 35.00 [30]
M.

succiniciproducens 2,314,078 2384 - 2004 335 352 373 14.05 [71]

- 2007 425 519 686 17.83 [75]
C. glutamicum 3,282,708 3002 ModelCg1 2008 247 411 446 8.23 [102]

3,282,708 3002 ModelCg2 2009 277 423 502 9.23 [103]
3,292,392 3015 iJM658 2015 658 984 1065 21.82 [104]
3,282,708 3002 iC773 2017 773 950 1207 25.57 [32]

E. coli 4,641,652 4453 iJR904 2003 904 625 931 20.30 [105]
4,641,652 4453 iAF1260 2007 1260 1039 2077 28.30 [106]
4,639,675 4325 iJO1366 2011 1366 1136 2251 31.58 [107]
4,639,675 4420 iOL1650-ME 2013 1541 6563 12009 34.86 [108]

S. cerevisiae 12,261,038 6183 iFF708 2003 708 733 1175 16.00 [101]
iIN800 2008 800 1013 1446 17.20 [109]

iMM904 2009 904 1228 1412 19.65 [110]
iTO977 2013 977 1353 1566 21.24 [111]

# Number; ORF: open reading frame.

5. Attempts at Metabolic Modeling of A. succinogenes

Despite the fact that excess studies have been published on the optimization of up-
stream, midstream and downstream processing steps of SA production using A. succino-
genes, the application of in silico study on this microorganism has not yet been covered
as expected. Additionally, one of the core objectives of this study is to expose the current
status of computational studies on the development of this biocatalyst and inspire scholars
to engage with the topic straightaway. In our previous review [11], we identified six major
bottlenecks for industrial application of this strain: (1) byproduct formation, (2) auxotrophy,
(3) pH sensitivity, (4) dearth of metabolic engineering tools, (5) redox imbalance (NADH
limitations) and (6) product inhibition. Several attempts have been assessed to overcome
these challenges. However, almost all of these efforts were fragmented and tedious in a
way to solve these grand challenges with commonly employed traditional methods. There-
fore, developing well-organized systematic strategies though computational approaches is
crucial to alleviate these situations.

As shown in Tables 2 and 3, there are very few in silico studies in general and only one
GEM specifically regarding A. succinogenes. The majority of modeling studies were based on
glucose metabolism focusing on the central carbon (specifically glycolysis and TCA cycle)
pathways. This is most probably because glucose is the most preferable carbon source of the
strain and the two pathways harbor the most important steps in the SA production process.
Examples of non-glucose-based metabolic modeling studies include xylose [112,113], sugar
mixture [113] and glycerol [88,114]. In general, the metabolic modeling study timeline of
A. succinogenes could be seen by dividing it into two major separate eras as pre- and post-
genomic. The fundamental research during the pre-genomic [115–117] and genomic [8]
metabolic modeling studies of A. succinogenes was led by McKinlay et al. In the pre-genomic
era, metabolic studies were essentially based on isotope labeling experiments. In the first
study, a chemically defined medium was created to evaluate the intracellular metabolic
flux and predict the SA production metabolic map of A. succinogenes using 13C labeling
experiments [115]. Later on, the strain’s metabolic pathways and fluxes were determined
by spectrometry (gas chromatography–mass spectrometry and nuclear magnetic resonance)
through C-labeled product isotopes [116]. In the subsequent study, MFA was performed
to estimate the influence of carbon dioxide and reductant concentrations on the strain’s
metabolism [117]. All the above three experiments were based on C-labeled glucose
substrate, in which the first one provided insights on the general SA production metabolism,
the second focused on the product/byproduct metabolism and the last one emphasized
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the intermediate metabolites. Obviously, the results of these in vitro experiments could be
viable assets for the construction and validation of the upcoming in silico metabolic studies
after them.

The release of the complete genome sequence of A. succinogenes 130Z [8] was a phe-
nomenal motivation for researchers to undergo progressive experiments and attempt a few
in silico analysis studies as well. Remarkably, the output has been further stretched beyond
this strain in a way that powerful genes of A. succinogenes were transferred into other mi-
croorganisms to develop efficient SA-producing cell factories. Besides, these sequence data
could be applied in comparative genomic studies of related microbes. The post-genomic
metabolic modeling studies are shown in Table 2. Rafieenia developed the metabolic model
of A. succinogenes composed of 27 reactions and 28 metabolites with a sugar mixture of
glucose and xylose by applying MFA via a computational technique [81]. Furthermore,
constrained [88] and dynamic [90] MFA methods were employed to determine flux ranges
and maximum productivity in A. succinogenes metabolism, respectively. Clearly, previously
discussed modeling studies were all limited at the central carbon metabolism boundaries.
Hence, the development of models with more inclusive and higher predictive power
was needed. Nag et al. developed an extended intermediate model that contained nu-
cleic acid, amino acid, lipid and glycogen metabolisms in addition to the central carbon
metabolism [95]. However, this model still did not explicitly incorporate all the known
metabolic pathways of A. succinogenes to have a comprehensive understanding of the
strain’s metabolism. At last, the first and only GEM (iBP722) of A. succinogenes was pub-
lished [30] two decades after the first GEM (i.e., Haemophilus influenzae) was released [118].
To date, to the best of our knowledge, there is no experimental study based on this GEM.
All in all, advancements of in silico metabolic modeling of A. succinogenes upgraded from
the first 27 reactions to 375 and finally a GEM with 1072 reactions (Tables 2 and 3). The
next model is expected to consider these achievements as frameworks and will be designed
thereof.

6. Perspectives and Conclusions

Beholding the magnificent characteristics of computing such as the speed, versatility,
accuracy and more, in silico study of metabolic modeling is generally priceless. We have
listed some of the advancements, existing gaps and future outlooks in the development
of computational methods for effective SA production (Table 4). The accumulated ex-
perimental data can be principally helpful to construct and validate in silico metabolic
models. In the case of A. succinogenes, the majority of the modeling study relied on isotope
labeling on a glucose substrate. The limitation of this approach is its restriction to only
core metabolic networks so that it is unable to move forward to a GEM [119]. Besides, in
such studies, non-glucose substrates were overlooked and this could impact the notion to
exploit all available bioresources for SA production. Bear in mind that one of the fascinating
advantages of A. succinogenes as an SA-producing biocatalyst is its utilization of a wide
range of substrates.

Table 4. Opportunities, gaps/challenges and perspectives for in silico metabolic modeling of succinic acid production.

Opportunities/Advancements Gaps/Challenges Perspectives/Recommendations

• Availability of sufficient
experimental data *

• Limited study on non-glucose
substrates

• Modeling more non-glucose-based
metabolism

• Sequence and omics data • Confined at theoretical stage • More GEMs and other models

• Resources, database and software
tools

• Limited number of metabolic
models

• Model-guided metabolic
engineering

• Advantages of the strain over the
other related organisms* • Auxotrophy and other drawbacks* • Explore metabolic pathways to

avoid auxotrophy *

• Lessons learned from existing
models • Appropriate computational method • Adopt genomic modeling studies
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Table 4. Cont.

Opportunities/Advancements Gaps/Challenges Perspectives/Recommendations

• High-throughput (HT) techniques • Operation skill for some HT
techniques

• New computational tools and
strategies

• High-performance computing
(HTC) • Cost and operation skill for HPC • Collaboration from various

disciplines

• Develop user-friendly and
cost-effective instruments

* More emphasis on A. succinogenes.

Progress in in silico modeling is related to advancements in biotechnological HT
techniques and access to omics data, bioinformatics tools and resources and literatures
integrated with high-performance computing (HPC) systems. This is an interdisciplinary
approach that needs collaboration from various experts from life, chemical and physical
sciences and computational, mathematical and other backgrounds. In case technical gaps
in HT and HPC and other issues are encountered, this could apparently be addressed by
these collaborations and lessons learned from previous models. It is worth mentioning that
the final goal of in silico modeling is to develop metabolically capable organisms for the
large-scale production of target products. Nonetheless, most of the previous computational
studies, particularly on SA production, remained at the theoretical stage. Evidently, a
review by Valderrama-Gomez et al. [14] verified that only approximately 38% of the
reported studies in the temporal years between 2002 and 2016 could be experimentally
tested from the total computational studies. Unfortunately, none of them were the exact
applications of their corresponding in silico predictions. It is recommended to construct
highly predictive models, and this model should guide metabolic engineering strategy to
achieve the outline goal: in silico→ in vitro→ in vivo.

As far as A. succinogenes is concerned, taking overwhelming advantages of this strain
over other SA-producing strains and research advancements discussed in our previous
review [11] and points raised here, it is crucial at this point to design an industrially robust
biocatalyst of its kind.
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AcAld acetaldehyde
ATP adenosine triphosphate
C4 4 carbon
e.g., example
F-6-P fructose-6-phosphate
G-3-P glyceraldehyde-3-phosphate
GEM genome-scale metabolic model
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HPC high-performance computing
IDH isocitrate dehydrogenase
NADH nicotinamide adenine dinucleotide
OAA oxaloacetate
PEP phosphoenolpyruvate
PPP pentose phosphate pathway
pyc pyruvate carboxylase gene
R&D research and development
Ru-5-P ribulose-5-phosphate
SA succinic acid
TCA tricarboxylic acid
AcP acetylphosphate
C3 3 carbon
CO2 carbon dioxide
F-1,6-P fructose-1,6-bisphosphate
FBA flux balance analysis
G-6-P glucose-6-phosphate
GS glyoxylate shunt
HT high throughput
MFA metabolic flux analysis
NADPH nicotinamide adenine dinucleotide phosphate
OPR open reading frame
Pi inorganic phosphate
ptsG PEP-dependent phosphotransferase system glucose-specific gene
Pyr pyruvate
Rbo-5-P ribose-5-phosphate
S-7-P sedoheptulose-7-phosphate
SDH succinate dehydrogenase
X-5-P xylulose-5-phosphate

References
1. Dessie, W.; Luo, X.; Tang, J.; Tang, W.; Wang, M.; Qin, Z.; Tan, Y. Towards Full Utilization of Biomass Resources: A Case Study on

Industrial Hemp Residue and Spent Mushroom Substrate. Processes 2021, 9, 1200. [CrossRef]
2. Werpy, T.; Petersen, G. Top Value Added Chemicals from Biomass: Volume I—Results of Screening for Potential Candidates from Sugars

and Synthesis Gas; National Renewable Energy Lab.: Golden, CO, USA, 2004.
3. Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates—The

US Department of Energy’s “Top 10” revisited. Green Chem. 2010, 12, 539–554. [CrossRef]
4. Pateraki, C.; Patsalou, M.; Vlysidis, A.; Kopsahelis, N.; Webb, C.; Koutinas, A.A.; Koutinas, M. Actinobacillus succinogenes:

Advances on succinic acid production and prospects for development of integrated biorefineries. Biochem. Eng. J. 2016, 112,
285–303. [CrossRef]

5. Dessie, W.; Luo, X.; Wang, M.; Feng, L.; Liao, Y.; Wang, Z.; Yong, Z.; Qin, Z. Current advances on waste biomass transformation
into value-added products. Appl. Microbiol. Biotechnol. 2020, 104, 4757–4770. [CrossRef]

6. Bender, T.A.; Dabrowski, J.A.; Gagné, M.R. Homogeneous catalysis for the production of low-volume, high-value chemicals from
biomass. Nat. Rev. Chem. 2018, 2, 35–46. [CrossRef]

7. Zeikus, J.G.; Jain, M.K.; Elankovan, P. Biotechnology of succinic acid production and markets for derived industrial products.
Appl. Microbiol. Biotechnol. 1999, 51, 545–552. [CrossRef]

8. McKinlay, J.B.; Laivenieks, M.; Schindler, B.D.; McKinlay, A.A.; Siddaramappa, S.; Challacombe, J.F.; Lowry, S.R.; Clum, A.;
Lapidus, A.L.; Burkhart, K.B.; et al. A genomic perspective on the potential of Actinobacillus succinogenes for industrial succinate
production. BMC Genom. 2010, 11, 680. [CrossRef] [PubMed]

9. Cvijovic, M.; Bordel, S.; Nielsen, J. Mathematical models of cell factories: Moving towards the core of industrial biotechnology.
Microb. Biotechnol. 2011, 4, 572–584. [CrossRef]

10. Badri, A.; Srinivasan, A.; Raman, K. In Silico Approaches to Metabolic Engineering. In Current Developments in Biotechnology
and Bioengineering; Gunasekaran, P., Noronha, S., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 161–200.
[CrossRef]

11. Dessie, W.; Xin, F.; Zhang, W.; Jiang, Y.; Wu, H.; Ma, J.; Jiang, M. Opportunities, challenges, and future perspectives of succinic
acid production by Actinobacillus succinogenes. Appl. Microbiol. Biotechnol. 2018, 102, 9893–9910. [CrossRef]

http://doi.org/10.3390/pr9071200
http://doi.org/10.1039/b922014c
http://doi.org/10.1016/j.bej.2016.04.005
http://doi.org/10.1007/s00253-020-10567-2
http://doi.org/10.1038/s41570-018-0005-y
http://doi.org/10.1007/s002530051431
http://doi.org/10.1186/1471-2164-11-680
http://www.ncbi.nlm.nih.gov/pubmed/21118570
http://doi.org/10.1111/j.1751-7915.2010.00233.x
http://doi.org/10.1016/B978-0-444-63667-6.00008-0
http://doi.org/10.1007/s00253-018-9379-5


www.manaraa.com

Fermentation 2021, 7, 220 15 of 18

12. Lee, S.Y.; Kim, J.M.; Song, H.; Lee, J.W.; Kim, T.Y.; Jang, Y.-S. From genome sequence to integrated bioprocess for succinic acid
production by Mannheimia succiniciproducens. Appl. Microbiol. Biotechnol. 2008, 79, 11–22. [CrossRef]

13. Milne, C.B.; Kim, P.-J.; Eddy, J.A.; Price, N.D. Accomplishments in genome-scale in silico modeling for industrial and medical
biotechnology. Biotechnol. J. 2009, 4, 1653–1670. [CrossRef]

14. Valderrama-Gomez, M.A.; Kreitmayer, D.; Wolf, S.; Marin-Sanguino, A.; Kremling, A. Application of theoretical methods to
increase succinate production in engineered strains. Bioprocess Biosyst. Eng. 2017, 40, 479–497. [CrossRef]

15. Smyth, H.F.; Carpenter, C.P.; Weil, C.S. Range-finding toxicity data: List IV. AMA Arch. Indust. Hyg. Occup. Med. 1951, 4, 119–122.
16. Saxena, R.K.; Saran, S.; Isar, J.; Kaushik, R. Production and Applications of Succinic Acid. In Current Developments in Biotechnology

and Bioengineering; Pandey, A., Negi, S., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 601–630. [CrossRef]
17. Li, J.; Rong, L.; Zhao, Y.; Li, S.; Zhang, C.; Xiao, D.; Foo, J.L.; Yu, A. Next-generation metabolic engineering of non-conventional

microbial cell factories for carboxylic acid platform chemicals. Biotechnol. Adv. 2020, 43, 107605. [CrossRef] [PubMed]
18. Cok, B.; Tsiropoulos, I.; Roes, A.L.; Patel, M.K. Succinic acid production derived from carbohydrates: An energy and greenhouse

gas assessment of a platform chemical toward a bio-based economy. Biofuels Bioprod. Biorefin. 2014, 8, 16–29. [CrossRef]
19. Guettler, M.V.; Jain, M.K.; Rumler, D. Method for Making Succinic Acid, Bacterial Variants for Use in the Process, and Methods

for Obtaining Variants. U.S. Patent 5,573,931, 12 November 1996.
20. Guettler, M.V.; Rumler, D.; Jain, M.K. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine

rumen. Int. J. Syst. Evol. Microbiol. 1999, 49, 207–216. [CrossRef]
21. Wolin, M.J. Metabolic interactions among intestinal microorganisms. Am. J. Clin. Nutr. 1974, 27, 1320–1328. [CrossRef] [PubMed]
22. Miller, T.L. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Arch. Microbiol. 1978,

117, 145–152. [CrossRef] [PubMed]
23. Zeikus, J.G. Chemical and fuel production by anaerobic bacteria. Annu. Rev. Microbiol. 1980, 34, 423–464. [CrossRef]
24. Glassner, D.A.; Datta, R. Process for the Production and Purification of Succinic Acid. U.S. Patent 5,143,834, 1 September 1992.
25. der Werf, M.J.V.; Guettler, M.V.; Jain, M.K.; Zeikus, J.G. Environmental and physiological factors affecting the succinate product

ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch. Microbiol. 1997, 167, 332–342. [CrossRef]
26. Kim, P.; Laivenieks, M.; McKinlay, J.; Vieille, C.; Gregory Zeikus, J. Construction of a shuttle vector for the overexpression of

recombinant proteins in Actinobacillus succinogenes. Plasmid 2004, 51, 108–115. [CrossRef]
27. JGI. Available online: https://genome.jgi.doe.gov/portal/actsu/actsu.info.html (accessed on 7 January 2021).
28. Joshi, R.V.; Schindler, B.D.; McPherson, N.R.; Tiwari, K.; Vieille, C. Development of a markerless knockout method for Actinobacil-

lus succinogenes. Appl. Environ. Microbiol. 2014, 80, 3053–3061. [CrossRef] [PubMed]
29. Zhang, H.; Shen, N.; Qin, Y.; Zhu, J.; Li, Y.; Wu, J.; Jiang, M.-G. Complete Genome Sequence of Actinobacillus succinogenes GXAS137,

a Highly Efficient Producer of Succinic Acid. Gen. Announc. 2018, 6, e01562-17. [CrossRef]
30. Pereira, B.; Miguel, J.; Vilaça, P.; Soares, S.; Rocha, I.; Carneiro, S. Reconstruction of a genome-scale metabolic model for

Actinobacillus succinogenes 130Z. BMC Syst. Biol. 2018, 12, 61. [CrossRef] [PubMed]
31. Pitkänen, E.; Jouhten, P.; Rousu, J. Inferring branching pathways in genome-scale metabolic networks. BMC Syst. Biol. 2009, 3,

103. [CrossRef]
32. Zhang, Y.; Cai, J.; Shang, X.; Wang, B.; Liu, S.; Chai, X.; Tan, T.; Zhang, Y.; Wen, T. A new genome-scale metabolic model of

Corynebacterium glutamicum and its application. Biotechnol. Biofuels 2017, 10, 169. [CrossRef]
33. Miklóssy, I.; Bodor, Z.; Sinkler, R.; Orbán, K.C.; Lányi, S.; Albert, B. In silico and in vivo stability analysis of a heterologous

biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli. J. Biomol. Str. Dyn. 2017, 35, 1874–1889.
[CrossRef] [PubMed]

34. Vuoristo, K.S.; Mars, A.E.; Sanders, J.P.M.; Eggink, G.; Weusthuis, R.A. Metabolic Engineering of TCA Cycle for Production of
Chemicals. Trends Biotechnol. 2016, 34, 191–197. [CrossRef]

35. Nghiem, N.P.; Kleff, S.; Schwegmann, S. Succinic Acid: Technology Development and Commercialization. Fermentation 2017, 3,
26. [CrossRef]

36. Song, H.; Lee, S.Y. Production of succinic acid by bacterial fermentation. Enzym. Microb. Technol. 2006, 39, 352–361. [CrossRef]
37. Cheng, K.-K.; Wang, G.-Y.; Zeng, J.; Zhang, J.-A. Improved Succinate Production by Metabolic Engineering. Biomed. Res. Int. 2013,

2013, 538790. [CrossRef]
38. Vemuri, G.N.; Eiteman, M.A.; Altman, E. Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by

Metabolically Engineered Strains of Escherichia coli. Appl. Environ. Microbiol. 2002, 68, 1715–1727. [CrossRef]
39. Yang, J.; Wang, Z.; Zhu, N.; Wang, B.; Chen, T.; Zhao, X. Metabolic engineering of Escherichia coli and in silico comparing of

carboxylation pathways for high succinate productivity under aerobic conditions. Microbiol. Res. 2014, 169, 432–440. [CrossRef]
40. Kim, P.; Laivenieks, M.; Vieille, C.; Zeikus, J.G. Effect of Overexpression of Actinobacillus succinogenes Phosphoenolpyruvate

Carboxykinase on Succinate Production in Escherichia coli. Appl. Environ. Microbiol. 2004, 70, 1238–1241. [CrossRef]
41. Cui, Z.; Gao, C.; Li, J.; Hou, J.; Lin, C.S.K.; Qi, Q. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid

production from glycerol at low pH. Metab. Eng. 2017, 42, 126–133. [CrossRef] [PubMed]
42. Lin, H.; Vadali, R.V.; Bennett, G.N.; San, K.-Y. Increasing the Acetyl-CoA Pool in the Presence of Overexpressed Phosphoenolpyru-

vate Carboxylase or Pyruvate Carboxylase Enhances Succinate Production in Escherichia coli. Biotechnol. Prog. 2004, 20, 1599–1604.
[CrossRef]

http://doi.org/10.1007/s00253-008-1424-3
http://doi.org/10.1002/biot.200900234
http://doi.org/10.1007/s00449-016-1729-z
http://doi.org/10.1016/B978-0-444-63662-1.00027-0
http://doi.org/10.1016/j.biotechadv.2020.107605
http://www.ncbi.nlm.nih.gov/pubmed/32739448
http://doi.org/10.1002/bbb.1427
http://doi.org/10.1099/00207713-49-1-207
http://doi.org/10.1093/ajcn/27.11.1320
http://www.ncbi.nlm.nih.gov/pubmed/4217102
http://doi.org/10.1007/BF00402302
http://www.ncbi.nlm.nih.gov/pubmed/678020
http://doi.org/10.1146/annurev.mi.34.100180.002231
http://doi.org/10.1007/s002030050452
http://doi.org/10.1016/j.plasmid.2003.11.003
https://genome.jgi.doe.gov/portal/actsu/actsu.info.html
http://doi.org/10.1128/AEM.00492-14
http://www.ncbi.nlm.nih.gov/pubmed/24610845
http://doi.org/10.1128/genomeA.01562-17
http://doi.org/10.1186/s12918-018-0585-7
http://www.ncbi.nlm.nih.gov/pubmed/29843739
http://doi.org/10.1186/1752-0509-3-103
http://doi.org/10.1186/s13068-017-0856-3
http://doi.org/10.1080/07391102.2016.1198721
http://www.ncbi.nlm.nih.gov/pubmed/27492654
http://doi.org/10.1016/j.tibtech.2015.11.002
http://doi.org/10.3390/fermentation3020026
http://doi.org/10.1016/j.enzmictec.2005.11.043
http://doi.org/10.1155/2013/538790
http://doi.org/10.1128/AEM.68.4.1715-1727.2002
http://doi.org/10.1016/j.micres.2013.09.002
http://doi.org/10.1128/AEM.70.2.1238-1241.2004
http://doi.org/10.1016/j.ymben.2017.06.007
http://www.ncbi.nlm.nih.gov/pubmed/28627452
http://doi.org/10.1021/bp049843a


www.manaraa.com

Fermentation 2021, 7, 220 16 of 18

43. Li, Y.; Li, M.; Zhang, X.; Yang, P.; Liang, Q.; Qi, Q. A novel whole-phase succinate fermentation strategy with high volumetric
productivity in engineered Escherichia coli. Bioresour. Technol. 2013, 149, 333–340. [CrossRef] [PubMed]

44. Liu, W.; Zheng, P.; Yu, F.; Yang, Q. A two-stage process for succinate production using genetically engineered Corynebacterium
acetoacidophilum. Process Biochem. 2015, 50, 1692–1700. [CrossRef]

45. Tsuji, A.; Okada, S.; Hols, P.; Satoh, E. Metabolic engineering of Lactobacillus plantarum for succinic acid production through
activation of the reductive branch of the tricarboxylic acid cycle. Enzym. Microb. Technol. 2013, 53, 97–103. [CrossRef]

46. Jojima, T.; Noburyu, R.; Suda, M.; Okino, S.; Yukawa, H.; Inui, M. Improving Process Yield in Succinic Acid Production by Cell
Recycling of Recombinant Corynebacterium glutamicum. Fermentation 2016, 2, 5. [CrossRef]

47. Yuzbashev, T.V.; Yuzbasheva, E.Y.; Sobolevskaya, T.I.; Laptev, I.A.; Vybornaya, T.V.; Larina, A.S.; Matsui, K.; Fukui, K.; Sineoky,
S.P. Production of succinic acid at low pH by a recombinant strain of the aerobic yeast Yarrowia lipolytica. Biotechnol. Bioeng. 2010,
107, 673–682. [CrossRef] [PubMed]

48. Prabhu, A.A.; Ledesma-Amaro, R.; Lin, C.S.K.; Coulon, F.; Thakur, V.K.; Kumar, V. Bioproduction of succinic acid from xylose by
engineered Yarrowia lipolytica without pH control. Biotechnol. Biofuels 2020, 13, 113. [CrossRef] [PubMed]

49. Li, N.; Zhang, B.; Chen, T.; Wang, Z.; Tang, Y.-J.; Zhao, X. Directed pathway evolution of the glyoxylate shunt in Escherichia coli for
improved aerobic succinate production from glycerol. J. Ind. Microbiol. Biotechnol. 2013, 40, 1461–1475. [CrossRef]

50. Zhu, L.-W.; Li, X.-H.; Zhang, L.; Li, H.-M.; Liu, J.-H.; Yuan, Z.-P.; Chen, T.; Tang, Y.-J. Activation of glyoxylate pathway without
the activation of its related gene in succinate-producing engineered Escherichia coli. Metab. Eng. 2013, 20, 9–19. [CrossRef]

51. Arikawa, Y.; Kobayashi, M.; Kodaira, R.; Shimosaka, M.; Muratsubaki, H.; Enomoto, K.; Okazaki, M. Isolation of sake yeast
strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation. J. Biosci. Bioeng.
1999, 87, 333–339. [CrossRef]

52. Singh, A.; Cher Soh, K.; Hatzimanikatis, V.; Gill, R.T. Manipulating redox and ATP balancing for improved production of
succinate in E. coli. Metab. Eng. 2011, 13, 76–81. [CrossRef]

53. Mao, Y.; Li, G.; Chang, Z.; Tao, R.; Cui, Z.; Wang, Z.; Tang, Y.-J.; Chen, T.; Zhao, X. Metabolic engineering of Corynebacterium
glutamicum for efficient production of succinate from lignocellulosic hydrolysate. Biotechnol. Biofuels 2018, 11, 95. [CrossRef]

54. Raab, A.M.; Gebhardt, G.; Bolotina, N.; Weuster-Botz, D.; Lang, C. Metabolic engineering of Saccharomyces cerevisiae for the
biotechnological production of succinic acid. Metab. Eng. 2010, 12, 518–525. [CrossRef] [PubMed]

55. Lin, H.; Bennett, G.N.; San, K.-Y. Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve
process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 2005, 7, 116–127. [CrossRef] [PubMed]

56. Litsanov, B.; Kabus, A.; Brocker, M.; Bott, M. Efficient aerobic succinate production from glucose in minimal medium with
Corynebacterium glutamicum. Microb. Biotechnol. 2012, 5, 116–128. [CrossRef]

57. Khodayari, A.; Chowdhury, A.; Maranas, C.D. Succinate Overproduction: A Case Study of Computational Strain Design Using a
Comprehensive Escherichia coli Kinetic Model. Front. Bioeng. Biotechnol. 2015, 2, 76. [CrossRef] [PubMed]

58. Raab, A.M.; Lang, C. Oxidative versus reductive succinic acid production in the yeast Saccharomyces cerevisiae. Bioeng. Bugs 2011,
2, 120–123. [CrossRef]

59. Fang, X.; Lloyd, C.J.; Palsson, B.O. Reconstructing organisms in silico: Genome-scale models and their emerging applications.
Nat. Rev. Microbiol. 2020, 18, 731–743. [CrossRef]

60. Sarkar, D.; Maranas, C.D. Engineering microbial chemical factories using metabolic models. BMC Chem. Eng. 2019, 1, 22.
[CrossRef]

61. Landon, S.; Rees-Garbutt, J.; Marucci, L.; Grierson, C. Genome-driven cell engineering review: In vivo and in silico metabolic and
genome engineering. Essays Biochem. 2019, 63, 267–284. [CrossRef] [PubMed]

62. Jouhten, P. Metabolic modelling in the development of cell factories by synthetic biology. Comput. Struct. Biotechnol. J. 2012, 3,
e201210009. [CrossRef]

63. Bordbar, A.; Monk, J.M.; King, Z.A.; Palsson, B.O. Constraint-based models predict metabolic and associated cellular functions.
Nat. Rev. Genet. 2014, 15, 107–120. [CrossRef] [PubMed]

64. Fleming, R.M.T.; Thiele, I.; Provan, G.; Nasheuer, H.P. Integrated stoichiometric, thermodynamic and kinetic modelling of steady
state metabolism. J. Theor. Biol. 2010, 264, 683–692. [CrossRef]

65. Copeland, W.B.; Bartley, B.A.; Chandran, D.; Galdzicki, M.; Kim, K.H.; Sleight, S.C.; Maranas, C.D.; Sauro, H.M. Computational
tools for metabolic engineering. Metab. Eng. 2012, 14, 270–280. [CrossRef]

66. Jing, L.S.; Shah, F.F.M.; Mohamad, M.S.; Hamran, N.L.; Salleh, A.H.M.; Deris, S.; Alashwal, H. Database and tools for metabolic
network analysis. Biotechnol. Bioprocess Eng. 2014, 19, 568–585. [CrossRef]

67. O’Shea, K.; Misra, B.B. Software tools, databases and resources in metabolomics: Updates from 2018 to 2019. Metabolomics 2020,
16, 36. [CrossRef] [PubMed]

68. Islam, M.M.; Saha, R. Computational Approaches on Stoichiometric and Kinetic Modeling for Efficient Strain Design. In Synthetic
Metabolic Pathways: Methods and Protocols; Jensen, M.K., Keasling, J.D., Eds.; Springer: New York, NY, USA, 2018; pp. 63–82.
[CrossRef]

69. Orth, J.D.; Thiele, I.; Palsson, B.Ø. What is flux balance analysis? Nat. Biotechnol. 2010, 28, 245–248. [CrossRef] [PubMed]
70. Lee, S.Y.; Hong, S.H.; Moon, S.Y. In silico metabolic pathway analysis and design: Succinic acid production by metabolically

engineered Escherichia coli as an example. Genome Inform. 2002, 13, 214–223.

http://doi.org/10.1016/j.biortech.2013.09.077
http://www.ncbi.nlm.nih.gov/pubmed/24125798
http://doi.org/10.1016/j.procbio.2015.07.017
http://doi.org/10.1016/j.enzmictec.2013.04.008
http://doi.org/10.3390/fermentation2010005
http://doi.org/10.1002/bit.22859
http://www.ncbi.nlm.nih.gov/pubmed/20632369
http://doi.org/10.1186/s13068-020-01747-3
http://www.ncbi.nlm.nih.gov/pubmed/32607128
http://doi.org/10.1007/s10295-013-1342-y
http://doi.org/10.1016/j.ymben.2013.07.004
http://doi.org/10.1016/S1389-1723(99)80041-3
http://doi.org/10.1016/j.ymben.2010.10.006
http://doi.org/10.1186/s13068-018-1094-z
http://doi.org/10.1016/j.ymben.2010.08.005
http://www.ncbi.nlm.nih.gov/pubmed/20854924
http://doi.org/10.1016/j.ymben.2004.10.003
http://www.ncbi.nlm.nih.gov/pubmed/15781420
http://doi.org/10.1111/j.1751-7915.2011.00310.x
http://doi.org/10.3389/fbioe.2014.00076
http://www.ncbi.nlm.nih.gov/pubmed/25601910
http://doi.org/10.4161/bbug.2.2.14549
http://doi.org/10.1038/s41579-020-00440-4
http://doi.org/10.1186/s42480-019-0021-9
http://doi.org/10.1042/ebc20180045
http://www.ncbi.nlm.nih.gov/pubmed/31243142
http://doi.org/10.5936/csbj.201210009
http://doi.org/10.1038/nrg3643
http://www.ncbi.nlm.nih.gov/pubmed/24430943
http://doi.org/10.1016/j.jtbi.2010.02.044
http://doi.org/10.1016/j.ymben.2012.03.001
http://doi.org/10.1007/s12257-014-0172-8
http://doi.org/10.1007/s11306-020-01657-3
http://www.ncbi.nlm.nih.gov/pubmed/32146531
http://doi.org/10.1007/978-1-4939-7295-1_5
http://doi.org/10.1038/nbt.1614
http://www.ncbi.nlm.nih.gov/pubmed/20212490


www.manaraa.com

Fermentation 2021, 7, 220 17 of 18

71. Hong, S.H.; Kim, J.S.; Lee, S.Y.; In, Y.H.; Choi, S.S.; Rih, J.-K.; Kim, C.H.; Jeong, H.; Hur, C.G.; Kim, J.J. The genome sequence of
the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 2004, 22, 1275–1281. [CrossRef]

72. Hong, S.H.; Lee, S.Y. Enhanced production of succinic acid by metabolically engineered Escherichia coli with amplified activities of
malic enzyme and fumarase. Biotechnol. Bioprocess Eng. 2004, 9, 252. [CrossRef]

73. Lee, S.J.; Lee, D.-Y.; Kim, T.Y.; Kim, B.H.; Lee, J.; Lee, S.Y. Metabolic Engineering of Escherichia coli for Enhanced Production
of Succinic Acid, Based on Genome Comparison and In Silico Gene Knockout Simulation. Appl. Environ. Microbiol. 2005, 71,
7880–7887. [CrossRef]

74. Wang, Q.; Chen, X.; Yang, Y.; Zhao, X. Genome-scale in silico aided metabolic analysis and flux comparisons of Escherichia coli to
improve succinate production. Appl. Microbiol. Biotechnol. 2006, 73, 887–894. [CrossRef]

75. Kim, T.Y.; Kim, H.U.; Park, J.M.; Song, H.; Kim, J.S.; Lee, S.Y. Genome-scale analysis of Mannheimia succiniciproducens metabolism.
Biotechnol. Bioeng. 2007, 97, 657–671. [CrossRef]

76. Kim, T.Y.; Kim, H.U.; Song, H.; Lee, S.Y. In silico analysis of the effects of H2 and CO2 on the metabolism of a capnophilic
bacterium Mannheimia succiniciproducens. J. Biotechnol. 2009, 144, 184–189. [CrossRef]

77. Meijer, S.; Nielsen, M.L.; Olsson, L.; Nielsen, J. Gene deletion of cytosolic ATP: Citrate lyase leads to altered organic acid
production in Aspergillus niger. J. Ind. Microbiol. Biotechnol. 2009, 36, 1275–1280. [CrossRef] [PubMed]

78. Agren, R.; Otero, J.M.; Nielsen, J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic
acid production. J. Ind. Microbiol. Biotechnol. 2013, 40, 735–747. [CrossRef] [PubMed]

79. Otero, J.M.; Cimini, D.; Patil, K.R.; Poulsen, S.G.; Olsson, L.; Nielsen, J. Industrial systems biology of Saccharomyces cerevisiae
enables novel succinic acid cell factory. PLoS ONE 2013, 8, e54144. [CrossRef]

80. Becker, J.; Reinefeld, J.; Stellmacher, R.; Schäfer, R.; Lange, A.; Meyer, H.; Lalk, M.; Zelder, O.; von Abendroth, G.; Schröder, H.;
et al. Systems-wide analysis and engineering of metabolic pathway fluxes in bio-succinate producing Basfia succiniciproducens.
Biotechnol. Bioeng. 2013, 110, 3013–3023. [CrossRef] [PubMed]

81. Rafieenia, R. Metabolic capabilities of Actinobacillus succinogenes for succinic acid production. Braz. J. Chem. Eng. 2014, 31, 859–865.
[CrossRef]

82. Chua, P.S.; Salleh, A.H.M.; Mohamad, M.S.; Deris, S.; Omatu, S.; Yoshioka, M. Identifying a gene knockout strategy using a hybrid
of the bat algorithm and flux balance analysis to enhance the production of succinate and lactate in Escherichia coli. Biotechnol.
Bioprocess Eng. 2015, 20, 349–357. [CrossRef]

83. Jian, X.; Li, N.; Zhang, C.; Hua, Q. In silico profiling of cell growth and succinate production in Escherichia coli NZN111. Bioresour.
Bioprocess 2016, 3, 48. [CrossRef]

84. Mienda, B.S.; Shamsir, M.S.; Illias, R.M. Model-aided atpE gene knockout strategy in Escherichia coli for enhanced succinic acid
production from glycerol. J. Biomol. Str. Dyn. 2016, 34, 1705–1716. [CrossRef] [PubMed]

85. Mienda, B.S.; Shamsir, M.S.; Illias, R.M. Model-guided metabolic gene knockout of gnd for enhanced succinate production in
Escherichia coli from glucose and glycerol substrates. Comput. Biol. Chem. 2016, 61, 130–137. [CrossRef]

86. Choi, S.; Song, H.; Lim, S.W.; Kim, T.Y.; Ahn, J.H.; Lee, J.W.; Lee, M.-H.; Lee, S.Y. Highly selective production of succinic acid by
metabolically engineered Mannheimia succiniciproducens and its efficient purification. Biotechnol. Bioeng. 2016, 113, 2168–2177.
[CrossRef]

87. Lee, J.W.; Yi, J.; Kim, T.Y.; Choi, S.; Ahn, J.H.; Song, H.; Lee, M.-H.; Lee, S.Y. Homo-succinic acid production by metabolically
engineered Mannheimia succiniciproducens. Metab. Eng. 2016, 38, 409–417. [CrossRef] [PubMed]

88. Angeles-Martinez, L.; Theodoropoulos, C. Estimation of flux distribution in metabolic networks accounting for thermodynamic
constraints: The effect of equilibrium vs. blocked reactions. Biochem. Eng. J. 2016, 105, 347–357. [CrossRef]

89. Jian, X.; Li, N.; Chen, Q.; Hua, Q. Model-guided identification of novel gene amplification targets for improving succinate
production in Escherichia coli NZN111. Integr. Biol. 2017, 9, 830–835. [CrossRef]

90. St. John, P.C.; Crowley, M.F.; Bomble, Y.J. Efficient estimation of the maximum metabolic productivity of batch systems. Biotechnol.
Biofuels 2017, 10, 28. [CrossRef] [PubMed]

91. Tafur Rangel, A.E.; Camelo Valera, L.C.; Gómez Ramírez, J.M.; González Barrios, A.F. Effects of metabolic engineering on
downstream processing operational cost and energy consumption: The case of Escherichia coli’s glycerol conversion to succinic
acid. J. Chem. Technol. Biotechnol. 2018, 93, 2011–2020. [CrossRef]

92. Mohd Daud, K.; Zakaria, Z.; Shah, Z.A.; Mohamad, M.; Deris, S.; Omatu, S.; Corchado Rodríguez, J. A hybrid of differential
search algorithm and flux balance analysis to: Identify knockout strategies for in silico optimization of metabolites production.
Int. J. Adv. Soft Comput. Appl. 2018, 10, 84–107.

93. Mienda, B.S. Escherichia coli genome-scale metabolic gene knockout of lactate dehydrogenase (ldhA), increases succinate produc-
tion from glycerol. J. Biomol. Str. Dyn. 2018, 36, 3680–3686. [CrossRef]

94. Arif, M.A.; Mohamad, M.S.; Abd Latif, M.S.; Deris, S.; Remli, M.A.; Mohd Daud, K.; Ibrahim, Z.; Omatu, S.; Corchado, J.M. A
hybrid of Cuckoo Search and Minimization of Metabolic Adjustment to optimize metabolites production in genome-scale models.
Comput. Biol. Med. 2018, 102, 112–119. [CrossRef]

95. Nag, A.; St. John, P.C.; Crowley, M.F.; Bomble, Y.J. Prediction of reaction knockouts to maximize succinate production by
Actinobacillus succinogenes. PLoS ONE 2018, 13, e0189144. [CrossRef]

96. Widiastuti, H.; Lee, N.-R.; Karimi, I.A.; Lee, D.-Y. Genome-Scale In Silico Analysis for Enhanced Production of Succinic Acid in
Zymomonas mobilis. Processes 2018, 6, 30. [CrossRef]

http://doi.org/10.1038/nbt1010
http://doi.org/10.1007/BF02942339
http://doi.org/10.1128/AEM.71.12.7880-7887.2005
http://doi.org/10.1007/s00253-006-0535-y
http://doi.org/10.1002/bit.21433
http://doi.org/10.1016/j.jbiotec.2009.06.003
http://doi.org/10.1007/s10295-009-0607-y
http://www.ncbi.nlm.nih.gov/pubmed/19554356
http://doi.org/10.1007/s10295-013-1269-3
http://www.ncbi.nlm.nih.gov/pubmed/23608777
http://doi.org/10.1371/journal.pone.0054144
http://doi.org/10.1002/bit.24963
http://www.ncbi.nlm.nih.gov/pubmed/23832568
http://doi.org/10.1590/0104-6632.20140314s00002997
http://doi.org/10.1007/s12257-014-0466-x
http://doi.org/10.1186/s40643-016-0125-5
http://doi.org/10.1080/07391102.2015.1090341
http://www.ncbi.nlm.nih.gov/pubmed/26513379
http://doi.org/10.1016/j.compbiolchem.2016.01.013
http://doi.org/10.1002/bit.25988
http://doi.org/10.1016/j.ymben.2016.10.004
http://www.ncbi.nlm.nih.gov/pubmed/27746096
http://doi.org/10.1016/j.bej.2015.09.026
http://doi.org/10.1039/C7IB00077D
http://doi.org/10.1186/s13068-017-0709-0
http://www.ncbi.nlm.nih.gov/pubmed/28163785
http://doi.org/10.1002/jctb.5432
http://doi.org/10.1080/07391102.2017.1395768
http://doi.org/10.1016/j.compbiomed.2018.09.015
http://doi.org/10.1371/journal.pone.0189144
http://doi.org/10.3390/pr6040030


www.manaraa.com

Fermentation 2021, 7, 220 18 of 18

97. Lee, M.K.; Mohamad, M.S.; Choon, Y.W.; Daud, K.M.; Nasarudin, N.A.; Ismail, M.A.; Ibrahim, Z.; Napis, S.; Sinnott, R.O.
Comparison of Optimization-Modelling Methods for Metabolites Production in Escherichia coli. J. Integr. Bioinform. 2020, 17,
20190073. [CrossRef] [PubMed]

98. Upton, D.J.; McQueen-Mason, S.J.; Wood, A.J. In silico evolution of Aspergillus niger organic acid production suggests strategies
for switching acid output. Biotechnol. Biofuels 2020, 13, 27. [CrossRef]

99. Ahn, J.H.; Seo, H.; Park, W.; Seok, J.; Lee, J.A.; Kim, W.J.; Kim, G.B.; Kim, K.-J.; Lee, S.Y. Enhanced succinic acid production by
Mannheimia employing optimal malate dehydrogenase. Nat. Commun. 2020, 11, 1970. [CrossRef]

100. Mienda, B.S. Genome-scale metabolic models as platforms for strain design and biological discovery. J. Biomol. Str. Dyn. 2017, 35,
1863–1873. [CrossRef] [PubMed]

101. Famili, I.; Forster, J.; Nielsen, J.; Palsson, B.O. Saccharomyces cerevisiae phenotypes can be predicted by using constraint-based
analysis of a genome-scale reconstructed metabolic network. Proc. Natl. Acad. Sci. USA 2003, 100, 13134–13139. [CrossRef]

102. Kjeldsen, K.R.; Nielsen, J. In silico genome-scale reconstruction and validation of the Corynebacterium glutamicum metabolic
network. Biotechnol. Bioeng. 2009, 102, 583–597. [CrossRef] [PubMed]

103. Shinfuku, Y.; Sorpitiporn, N.; Sono, M.; Furusawa, C.; Hirasawa, T.; Shimizu, H. Development and experimental verification of a
genome-scale metabolic model for Corynebacterium glutamicum. Microb. Cell Fact. 2009, 8, 43. [CrossRef] [PubMed]

104. Mei, J.; Xu, N.; Ye, C.; Liu, L.; Wu, J. Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium
glutamicum S9114. Gene 2016, 575, 615–622. [CrossRef]

105. Reed, J.L.; Vo, T.D.; Schilling, C.H.; Palsson, B.O. An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR).
Genome Biol. 2003, 4, R54. [CrossRef]

106. Feist, A.M.; Henry, C.S.; Reed, J.L.; Krummenacker, M.; Joyce, A.R.; Karp, P.D.; Broadbelt, L.J.; Hatzimanikatis, V.; Palsson, B.Ø.
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic
information. Mol. Syst. Biol. 2007, 3, 121. [CrossRef]

107. Orth, J.D.; Conrad, T.M.; Na, J.; Lerman, J.A.; Nam, H.; Feist, A.M.; Palsson, B.Ø. A comprehensive genome-scale reconstruction
of Escherichia coli metabolism—2011. Mol. Syst. Biol. 2011, 7, 535. [CrossRef]

108. O’Brien, E.J.; Lerman, J.A.; Chang, R.L.; Hyduke, D.R.; Palsson, B.Ø. Genome-scale models of metabolism and gene expression
extend and refine growth phenotype prediction. Mol. Syst. Biol. 2013, 9, 693. [CrossRef]

109. Nookaew, I.; Jewett, M.C.; Meechai, A.; Thammarongtham, C.; Laoteng, K.; Cheevadhanarak, S.; Nielsen, J.; Bhumiratana, S. The
genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: A scaffold to query lipid metabolism. BMC
Syst. Biol. 2008, 2, 71. [CrossRef]

110. Mo, M.L.; Palsson, B.Ø.; Herrgård, M.J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast.
BMC Syst. Biol. 2009, 3, 37. [CrossRef]

111. Österlund, T.; Nookaew, I.; Bordel, S.; Nielsen, J. Mapping condition-dependent regulation of metabolism in yeast through
genome-scale modeling. BMC Syst. Biol. 2013, 7, 36. [CrossRef] [PubMed]

112. Bradfield, M.F.A.; Nicol, W. The pentose phosphate pathway leads to enhanced succinic acid flux in biofilms of wild-type
Actinobacillus succinogenes. Appl. Microbiol. Biotechnol. 2016, 100, 9641–9652. [CrossRef]

113. Pateraki, C.; Almqvist, H.; Ladakis, D.; Lidén, G.; Koutinas, A.A.; Vlysidis, A. Modelling succinic acid fermentation using a
xylose based substrate. Biochem. Eng. J. 2016, 114, 26–41. [CrossRef]

114. Vlysidis, A.; Du, C.; Webb, C.; Theodoropoulos, C. Experimental and Modelling Studies of the Bioconversion of Glycerol
to Succinic Acid by Actinobacillus Succinogenes. In Proceedings of the AIChE Annual Meeting, Philadelphia, PA, USA, 16–21
November 2008.

115. McKinlay, J.B.; Zeikus, J.G.; Vieille, C. Insights into Actinobacillus succinogenes fermentative metabolism in a chemically defined
growth medium. Appl. Environ. Microbiol. 2005, 71, 6651–6656. [CrossRef]

116. McKinlay, J.B.; Shachar-Hill, Y.; Zeikus, J.G.; Vieille, C. Determining Actinobacillus succinogenes metabolic pathways and fluxes by
NMR and GC-MS analyses of 13C-labeled metabolic product isotopomers. Metab. Eng. 2007, 9, 177–192. [CrossRef] [PubMed]

117. McKinlay, J.B.; Vieille, C. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3
and H2 concentrations. Metab. Eng. 2008, 10, 55–68. [CrossRef]

118. Edwards, J.S.; Palsson, B.O. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 1999, 274,
17410–17416. [CrossRef] [PubMed]

119. Tibocha-Bonilla, J.D.; Zuñiga, C.; Godoy-Silva, R.D.; Zengler, K. Advances in metabolic modeling of oleaginous microalgae.
Biotechnol. Biofuels 2018, 11, 241. [CrossRef] [PubMed]

http://doi.org/10.1515/jib-2019-0073
http://www.ncbi.nlm.nih.gov/pubmed/32374287
http://doi.org/10.1186/s13068-020-01678-z
http://doi.org/10.1038/s41467-020-15839-z
http://doi.org/10.1080/07391102.2016.1197153
http://www.ncbi.nlm.nih.gov/pubmed/27251747
http://doi.org/10.1073/pnas.2235812100
http://doi.org/10.1002/bit.22067
http://www.ncbi.nlm.nih.gov/pubmed/18985611
http://doi.org/10.1186/1475-2859-8-43
http://www.ncbi.nlm.nih.gov/pubmed/19646286
http://doi.org/10.1016/j.gene.2015.09.038
http://doi.org/10.1186/gb-2003-4-9-r54
http://doi.org/10.1038/msb4100155
http://doi.org/10.1038/msb.2011.65
http://doi.org/10.1038/msb.2013.52
http://doi.org/10.1186/1752-0509-2-71
http://doi.org/10.1186/1752-0509-3-37
http://doi.org/10.1186/1752-0509-7-36
http://www.ncbi.nlm.nih.gov/pubmed/23631471
http://doi.org/10.1007/s00253-016-7763-6
http://doi.org/10.1016/j.bej.2016.06.011
http://doi.org/10.1128/AEM.71.11.6651-6656.2005
http://doi.org/10.1016/j.ymben.2006.10.006
http://www.ncbi.nlm.nih.gov/pubmed/17197218
http://doi.org/10.1016/j.ymben.2007.08.004
http://doi.org/10.1074/jbc.274.25.17410
http://www.ncbi.nlm.nih.gov/pubmed/10364169
http://doi.org/10.1186/s13068-018-1244-3
http://www.ncbi.nlm.nih.gov/pubmed/30202436


www.manaraa.com

Reproduced with permission of copyright owner. Further reproduction
prohibited without permission.


	Introduction 
	Major R&D Advancements on SA and A. succinogenes 
	Succinic Acid Production Pathways 
	Metabolic Models of SA Producers 
	Attempts at Metabolic Modeling of A. succinogenes 
	Perspectives and Conclusions 
	References

